$(PCr_4O_{16})^{-3}$, a New Zunyite-like Anion in $(NH_4)_3 PCr_4O_{16}$

During a systematic investigation of condensed phosphochromic anions with general formula $[PCr_nO_{n+4}]^{3-}$ (1-4) one very often observed when preparing the corresponding ammonium salts the formation of well-developed orange rhombohedra, later identified as $(NH_4)_3PCr_4O_{16}$. The symmetry of this compound is trigonal (R3m) with the unit cell dimensions

$$a_{\rm H} = 12.033(8)$$
 Å, $c_{\rm H} = 10.032(8)$ Å, $Z = 3$,
 $a_{\rm R} = 7.710(5)$ Å, $\alpha_{\rm R} = 102.59(5)^{\circ}$, $Z = 1$.

Crystal structure analysis (R = 0.054) shows that the geometry of the anion is that schematically given in Fig. 1. This PCr₄O₁₆ group has a ternary symmetry, Cr(2) and P being located on a threefold axis (Cr₂-O-P = 180°0). Detailed geometrical features of this anion will be described later (5) but it is worth noticing the abnormally short P-O average (1.49 Å) in the central tetrahedron and the large difference between the Cr(1)-

FIG. 1. P and Cr(2) are located on the threefold axis. $Cr(1)O_4$ tetrahedron has a mirror plane symmetry.

0 average (1.56 Å) and the same average in the $Cr(2)-O_4$ tetrahedron (1.66 Å).

This new type of anion, somewhat similar to the Si_5O_{16} group, observed in zunyite (6) seems, up to now, to be the first example of a quaternary phosphorus in a finite

 TABLE I

 X-RAY POWDER DATA FOR (NH4)3PCr4O16

ıkl	$d_{ m calc}$	$d_{\rm obs}$	Ι
01	7.23	7.20	29
10	6.02	6.02	42
21	4.62	4.62	57
) 1 2	4.52	4.52	24
211	3.67	3.67	100
202	3.61	3.61	87
00	3.47	3.47	32
03	3.34	3.34	5
22	3.10	3.10	6
20	3.01	3.01	39
13	2.923	2.923	27
3 1	2.777	2.777	1
01	2.522		_
12	2.504	2.504	1
04	2.438	_	
03	2.409	2.409	11
21	2.326	_	
02	2.312	2.311	1
10	2.274	2.274	4

^{0022-4596/80/090439-02\$02.00/0} Copyright © 1980 by Academic Press, Inc. All rights of reproduction in any form reserved.

group. Table I gives indexed powder data of this compound which is easily prepared by boiling for some minutes a concentrated solution of ammonium dichromate and phosphoric acid in the ratio $\frac{1}{2}$.

References

- M. T. AVERBUCH-POUCHOT, A. DURIF, AND J. C. GUITEL, Acta Crystallogr. B 33, 1431-1535 (1977).
- 2. M. T. AVERBUCH-POUCHOT, A. DURIF, AND J. C. GUITEL, Acta Crystallogr. B 34, 3725-3727 (1978).
- 3. J. COING-BOYAT, A. DURIF, AND J. C. GUITEL, J. Solid State Chem. 30, 329–334 (1979).

- 4. M. T. AVERBUCH-POUCHOT, A. DURIF, AND J. C. GUITEL, J. Solid State Chem. (1980).
- 5. M. T. AVERBUCH-POUCHOT, A. DURIF, AND J. C. GUITEL, J. Solid State Chem. (1980).
- 6. W. B. KAMB, Acta Crystallogr. 13, 15-24 (1960).

M. T. Averbuch-Pouchot A. Durif

Laboratoire de Cristallographie CNRS 166 X, 38042 Grenoble Cedex, France Received March 24, 1980